Code: 20CS3401

II B.Tech - II Semester – Regular / Supplementary Examinations MAY - 2024

OPERATING SYSTEMS (COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks			
	•	UNIT-I						
1	a)	What is a system call? Explain exactly how	L2	CO1	7 M			
		a system call switches a process to kernel						
		mode during its execution and how is it						
		switched back to user mode on return from a						
		system call.						
	b)	Describe the differences between symmetric	L2	CO1	7 M			
		and asymmetric multiprocessing. What are						
		the advantages and disadvantages of						
		multiprocessor systems?						
	OR							
2	a)	Differentiate between computer system	L2	CO1	7 M			
		organization and computer system						
		architecture.						
	b)	Discuss about system calls with examples.	L2	CO1	7 M			

			UNIT	'-II			
3	a)	Describe the life	e cycle of a pr	L2	CO1	10 M	
		including the					
		and the events					
		Explain how the	ne operating sy	ystem manages			
		processes, inc	luding proce	ss scheduling,			
		creation, termin	nation and com	nmunication.			
	b)	Discuss the diff	ferences betwe	een threads and	L3	CO2	4 M
		processes in a	n operating s	ystem. Explain			
		the advantages	and disadvar	ntages of using			
		threads compar	red to process	es and provide			
		examples of sc	enarios where	each would be			
		more suitable.					
	1		OR				
4	a)	Discuss the pros and cons of the single core			L2	CO1	5 M
	system and multi core system in detail.						
	b)	Write the impo	ortant characteristics of Round			CO2	9 M
		Robin Sche					
		demonstrate its performance for the					
	following workload in a system with time						
	quantum = 2 units. Consider the set of 5						
		processes whos					
		are given below					
		Process ID	Arrival	Burst Time			
			Time				
		P1	5	5			
		P2	4	6			
		P3	3	7			
		P4	1	9			

		P5	2	2							
			-	3							
		P6	6								
		Draw a Gantt chart illustrating the execution									
		of these jobs and calculate the average									
		waiting and average turnaround times.									
			UNIT	-III							
5	a)	Interpret how	Banker's algor	rithm addresse	s L3	CO3	7 M				
		the problem	avoidance i	n							
	resource allocation and its significance in										
		ensuring system	n stability.								
	b)	What is mean	nt by Starvat	ion in Dinin	g L3	CO3	7 M				
		philosopher pro	oblem? Sugge	st a solution t	0						
		solve this probl	em by applyin	g Semaphores	•						
	OR										
6	a)	Describe	various s	synchronizatio	n L2	CO1	7 M				
		mechanisms, si	uch as semapl	nores, mutexes	5,						
		and monitors.									
	b)	What is the p	urpose of saf	ety algorithm	? L3	CO3	7 M				
		Interpret in deta	ail.								
					•						
			UNIT	-IV							
7	a)	Discuss the a	ndvantages, c	hallenges, an	d L4	CO4	7 M				
		trade-offs asso	ciated with d	lemand pagin	g						
		compared to	other memor	y managemen	ıt						
		techniques.									
	b)	Explain the co	oncept of the	Thrashing i	n L2	CO1	7 M				
		detail.									
	OR										

8	a)	Consider a paging hardware with a TLB.	L3	CO2	4 M				
		Assume that the entire page table and all the							
		pages are in the physical memory. It takes							
		10 milliseconds to search the TLB and 80							
		milliseconds to access the physical memory.							
		If the TLB hit ratio is 0.6, calculate the							
		effective memory access time by giving							
		detailed explanation.							
	b)	Illustrate Least Recently Used (LRU) page	L4	CO4	10 M				
		replacement algorithm in detail, including							
		its principles, implementation strategies, and							
		significance in operating system memory							
		management.							
		UNIT-V							
9	a)	Discuss the hierarchical structure of a file	L4	CO4	7 M				
		system and the functions of directories, files							
		and file operations.							
	b)	Explain the significance of disk scheduling	L2	CO1	7 M				
		in operating systems, outlining the							
		challenges it addresses and the goals it aims							
		to achieve.							
	OR								
10	a)	Describe various file access methods.	L2	CO1	7 M				
	b)	Distinguish between various Disk-	L4	CO4	7 M				
		scheduling algorithms.							